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Local (flux-tube) simulation

the good:

✓ spectral accuracy in the perpendicular
dynamics

✓ gyro-averaging is simple

✓ typically fast

the bad:

✗ simple background profiles

✗ boundary conditions sensible only in a
statistical sense

✗ can’t describe non-local phenomena

Global simulation

the good:

✓ arbitrary profile variation

✓ non-local phenomena

✓ large-scale coherent structures

the bad:

✗ lose spectral accuracy in radial
direction

✗ need to sweat a little to gyro-average

✗ Dirichlet BCs typical – intrinsic
length-scale

Can we somehow marry these two approaches?
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Two fundamental ideas to our approach:1

1. Novel boundary conditions

Additional local flux-tube simulations are used to provide reasonable boundary
conditions for global simulations.

2. Subsidiary expansion of the gyrokinetic equation

By exploiting the large box sizes typical of flux-tube simulations, global effects can
be incorporated as a next-order correction to the local ρ∗-small limit.

1Parra & Barnes, PPCF 57 (2015)
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IDEA: Use additional flux-tube simulations at different radial locations to determine
the boundary conditions in the ‘main’ simulation.

Figure: current implementation (parabolic) Figure: future implementation (arbitrary)

See Parra & Barnes, PPCF 57 (2015) for motivation.
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Our global method has been implemented in the
flux-tube code stella, which is freely available at the
following link,

Link https://github.com/stellaGK/stella

Documentation on how to run stella will soon be
available at

Link https://stellagk.github.io/stella/

For more details on stella, see Barnes et al. 2019 JCP.
A preprint on global stella is now on the arXiv at

Link https://arxiv.org/abs/2201.01506

We have performed tests to ensure that our new
approach has been implemented correctly and performs
robustly.
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BOUNDARY CONDITION METHOD:

Figure: Illustration of our multiple-flux-tube method. Information about the distribution
function g from two local and independent flux-tube simulations are fed into the boundary
region of a central, ‘global’ simulation. See Candy et al. 2020 PPCF 62 042001 for a
complementary approach.
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Simulations reveal excellent continuity between domains using the multibox approach
with no radial profile variation:
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Figure: Electrostatic potential at the outboard midplane for the CBC using different initial
conditions. Dashed lined indicate domain boundaries.
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Simulations reveal excellent continuity between domains using the multibox approach
with no radial profile variation:
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SUBSIDIARY EXPANSION: The gyrokinetic parameter, ρ∗
.
= ρi/a, is kept small.

Define a new expansion parameter ∆ = ℓx/a, where ℓx is the radial width of the
simulation.

Using the subsidiary ordering ρ∗ ≪ ∆ ≪ 1, expand GKE in ∆ to first order. Doing so
results in terms such as

iωD,k,s

(

gk,s +
Zse

Ts
FsJ0sϕk

)

≈

[

iωD,k,s

(

gk,s +
Zse
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FsJ0sϕk

)]
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red: full
green: O(1)
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.
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, Fk is the Fourier transform, primes denote
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SOURCES & SINKS: Needed to prevent flattening of the background profiles.

Global Stella will include two options for sources and sinks:

◮ Krook-type operator which has become the de facto standard in global
gyrokinetics.

◮ Novel projector approach that is more physically motivated.
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Our projector sink/source is enabled by the scale separation of our hybrid approach.
MOTIVATION: Consider a general equation

∂g

∂t
= Γ(g),

where Γ is a general nonlinear operator. Now consider 〈g〉, where angular brackets
denote some large-scale average, then the equation for g′ = g − 〈g〉 is given by

∂g′

∂t
= Γ(g) − 〈Γ(g)〉.

In our system, g represents the distribution function while Γ is the gyrokinetic
equation. The operation in red comprises our source/sink.
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Our gyrokinetic equation is then

∂f tb
s

∂t
= −(v‖b̂ + vD + v

lw
E + v

tb
E ) · ∇Rf

tb
s + µb̂ · ∇RB

∂f tb
s

∂v‖

−
ZsefMs

Ts
(v‖b̂ + vD + v

lw
E ) · ∇R〈ϕtb〉 − 〈all the red terms〉T

where 〈· · ·〉T = 〈〈· · · 〉x⊥
〉t is a ‘transport’ average that consists of a perpendicular

areal average

〈· · ·〉
x⊥

.
=

1

(ℓx − 2Lboundary)ℓy

∫∫

(· · · ) dxdy

and an exponentially weighted time average

〈· · ·〉t
.
=

∫ t
0 dt′ exp(t′/τs)(· · · )
∫ t

0 dt′ exp(t′/τs)
.

This time-averaging procedure is similar to what is currently used in GYRO.
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Now let’s do something interesting! Consider situation where

◮ Left box is marginally unstable (and possibly in Dimits regime)

◮ Right box is strongly driven (beyond Dimits)

What happens? Choose R/LT = 5.0 for the center box.
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Figure: left: Time averaged heat fluxes, including global and local simulations. right: Total
heat flux versus time for local simulations spread over the previous radial domain.
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heat flux versus time for local simulations spread over the previous radial domain.
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Radial variation introduces symmetry
breaking that can lead to flux of
parallel momentum.

◮ why is it negative?

◮ what is its radial profile?
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Figure: Parallel momentum flux over time for CBC.
Dashed line denotes time average.
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time averaged in the range t(cs/a) ∈ [600, 1200]

x/ρi

r/a

〈(Π‖/aniTivthi)(a
2/ρ2

i )〉ψ
−(ωE × B/5)(a/cs)

−0.1

−0.05

0

0.05

0.1

−40 −20 0 20 40 60

0.44 0.46 0.48 0.50 0.52 0.54 0.56

Figure: Time-averaged parallel momentum flux (purple line) and E × B shear rate (green line)
as a function of radius. The latter has been filtered to remove small-scale fluctuations. Dashed
dotted line denotes average of momentum flux. Grey regions denote boundary regions.
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TECHNICAL DETAILS



A NOTE ON DEALIASING:

Convolutions are performed
pseudo-spectrally by transforming to real
space.

Nonlinearities (local):

◮ convolution of ϕk with gk,s

Radial variation terms (global):

◮ convolution of r − r0 with other terms

2/3 rds dealiasing does not work for the
radial variation terms!



A NOTE ON DEALIASING:

Figure: Wavenumber diagram of the 2/3rds dealiasing rule. When information falls out of the
wavenumber grid, it gets down or upsampled by N until it falls within the grid.
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A NOTE ON DEALIASING:

Figure: Wavenumber diagram of the 2/3rds dealiasing rule. When information falls out of the
wavenumber grid, it gets down or upsampled by N until it falls within the grid.
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A NOTE ON DEALIASING:
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Figure: A demonstration of why the non-periodic linear function x cannot be truncated. The
linear function here is truncated to 17 modes (red squares), which results in the purple line. If
these modes are transformed to a higher resolution grid, the blue circles result.
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Instead of 2/3rds dealiasing, we use the
smallness of profile shearing (∼ρ∗, not
∼∆) and rely solely on hyperdissipation.



GLOBALISING MILLER: The geometrical
coefficients for local simulation are calculated using
the Miller equilibrium,

R(r, θ) = R0(r) + r cos[θ + sin θ arcsin δ(r)],

Z(r, θ) = κ(r)r sin(θ),

along with the Grad-Shafranov equation,

R2
∇ ·

(

∇ψ

R2

)

= −4πR2 dp

dψ
− I

dI

dψ
,

locally around a flux surface. Here, I = BTR.

To globalise, one cannot simply solve
Grad-Shafranov at various radial locations!
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GLOBALISING MILLER: Manipulating the Grad-Shafranov equation results in

I ′

I

∫ 2π

0

dθ
Jr

R2

(

1 +
I2

|∇ψ|2

)

= −

∫ 2π

0

dθ

(

4πJr

|∇ψ|2
p′ −

Jr

R2

(

q′

q
+

2R′

R

)

+
1

|∇r|2

{

1

Jr

[

(

∂Z

∂θ

)2

+

(

∂R

∂θ

)2
]′

−
∂rz
∂θ

})

.

where Jr is the Jacobian in (r, θ, ζ) coordinates. Similar equations for Jr and
(|∇ψ|2)′ can be derived. For global stella, we calculate the derivative of these
equations, which results in equations like

J ′
r

R
=

JrR
′

R2
+R′′∂Z

∂θ
+R′∂Z

′

∂θ
− Z ′′∂R

∂θ
− Z ′∂R

′

∂θ
.

We specify as input β′′, ψ′′, q′′. We cannot self-consistently specify higher derivatives
of δ and κ, so we must use additional constraints on R′′ and Z ′′.
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QUASINEUTRALITY: The electrostatic potential ϕ is determined using
quasineutrality,

Θ(r0)ϕk + X̂
(

Θ′ϕk

)

=
2

π
1/2

∑

s

Zs

∫

dv‖

∫

dµB(r)J0s(k⊥v⊥/Ωs)gk,s,

where k is the wavenumber and

Θ =
∑

s

∫

dv3 Z2
s e(1 − J2

0s)
Fs
Ts
,

Θ′ =
∑

s

∫

dv3 Z2
s e

[

(1 − J2
0s)

(

Fs
Ts

)′

+ 2J0sJ1s

(

k⊥v⊥

Ωs

)′ Fs
Ts

]

.

However, 1 − Γ0s → 0 as k⊥ → 0.

◮ For non-zonal modes, quasineutrality is solved iteratively for ϕ with the blue terms
treated as small.

◮ For zonal modes, the entire LHS must be inverted.
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PARALLEL BOUNDARY CONDITION: (Beer et al. 1995 PoP)

A(ψ,α(ψ, ζ, θ = 0), θ = 0) = A(ψ,α(ψ, ζ, θ = 2πN), θ = 2πN),

where α = ζ − q(ψ)θ. In Fourier space, with ψ as radial coordinate,

∑

kψ ,kα

Ak(θ = 0)eikψ(ψ−ψ0)+ikαα =

∑

kψ ,kα

Ak(θ = 2π)eikψ(ψ−ψ0)+ikαα−2πN ikα[q0+q′(ψ−ψ0)+q′′(ψ−ψ0)2/2+...].

Problems if q′′, q′′′, . . . 6= 0. Instead, use q as the radial coordinate:
∑

kq,kα

Ak(θ = 0)eikq(q−q0)+ikαα =
∑

kq,kα

Ak(θ = 2π)ei(kq−2πNkα)(q−q0)+ikαα−2πN ikαq0,

and so now
Akq,kα(θ = 0) = CkAkq+∆kq,kα(θ = 2π),

where Ck = exp(−2πN ikαq0) and ∆kq = 2πNkα.
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THE k⊥ = 0 MODE:

Hidden inside the gyrokinetic equation is a drift-kinetic equation for the k⊥ = 0 mode.
In the local limit, this equation is

∂gk=0,s

∂t
+ v‖

(

b̂ · ∇gk=0,s +
Zse

Ts
Fsb̂ · ∇ϕk=0

)

−
µs
ms

b̂ · ∇B
∂gk=0,s

∂v‖
= 0.

As the nonlinearity does not appear here, this does not couple to the rest of the GKE.
However, this independence is broken in our subsidiary expansion.
This mode consists of two pieces, one for gk,s and ϕk.

◮ The gk,s portion comes about from the mismatch of fluxes between the radial
boundaries — natural outcome of the new BCs

◮ The ϕk portion which gives the parallel electric field E‖ is more subtle... and
much more difficult to deal with!
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THE k⊥ = 0 ELECTROSTATIC POTENTIAL (E‖): KINETIC SPECIES

For k⊥ = 0 , J2
0s − 1 = J1s = 0, or in other words, 〈ϕ〉 = ϕ.

For kinetic species, the quasineutrality equation is

Θ(r0)ϕk + X̂
(

Θ′ϕk

)

=
2

π
1/2

∑

s

Zs

∫

dv‖

∫

dµB(r)J0s(k⊥v⊥/Ωs)gk,s,

NB: Θϕk=0 = Θ′ϕk=0 = 0 — zero mode does not appear!
Rather, we instead have a solvability condition: taking the local limit of the
quasineutrality equation, along with

∂gk=0,s

∂t
+ v‖

(

b̂ · ∇gk=0,s +
Zse

Ts
Fsb̂ · ∇ϕk=0

)

−
µs
ms

b̂ · ∇B
∂gk=0,s

∂v‖
= 0,

by ⊥-areal averaging and combining, we get 〈
∑

sZs
∫

d3v v‖b̂ · ∇gk=0,s〉x⊥
= 0 and

〈

∑

s

Zs

∫

d3v v‖b̂ · ∇

[

v‖

(

b̂ · ∇gk=0,s +
Zse

Ts
Fsb̂ · ∇ϕk=0

)

−
µs
ms

b̂ · ∇B
∂gk=0,s

∂v‖

]〉

x⊥

= 0.

Parallel physics determines this mode.
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s
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(

b̂ · ∇gk=0,s +
Zse
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THE k⊥ = 0 ELECTROSTATIC POTENTIAL (E‖): ADIABATIC ELECTRONS

Things are somewhat easier with adiabatic electrons... quasineutrality has parallel
physics is already built-in:

∫

d3v J0sgk,s − Θ(r)ϕk =
ne

Te
(ϕk − 〈ϕk〉ψ) .

Now ϕk=0 appears on the RHS. We still have a solvability condition,
〈
∫

d3v J0sgk,s − Θ(r)ϕk

〉

ψ
= 0,

which is broken by the radial BCs. In global stella, we employ a small correction
term to fix this:
∫

d3v J0sgk,s − Θ(r)ϕk −

〈

〈
∫

d3v J0sgk,s − Θ(r)ϕk

〉

ψ

〉

x⊥

=
ne

Te
(ϕk − 〈ϕk〉ψ) .

With this correction, all that’s needed is a gauge condition (we use ϕk=0 = 0 at the
inboard midplane).
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PLANS FOR EXTENDING THE stella CODE

Some novel current and planned features of stella:

✓ Full-flux surface stella for stellarators

✓ Response matrix methods are hybridized using shared memory — faster LU
decompositions and larger matrices

§ Shared memory hybridization will be applied to all of stella — scaling to 100s of
thousands of cores

§ LU decomposition coupled with global QN solver — global-local simulations with
implicit electrons

§ Electromagnetic effects in stella — global-local electromagnetic simulations

Stay tuned for these exciting developments!
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SUMMARY:

◮ Global stella offers a complimentary approach to global gyrokinetics

◮ Multiple-flux-tube method performs robustly under a variety of configurations

FUTURE STEPS:

◮ In-depth study of intrinsic rotation generation

◮ Determine how turbulence spreading plays out

◮ Investigate bistable states recently discovered by Christen 2021

◮ Apply this method to physically relevant profiles near the pedestal

Thank you for listening!
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